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This study revisits the problem of the zonally symmetric instability on the equatorial
β-plane. Rather than treating the classical problem of a steady basic flow, it treats a
sequence of problems of increasing complexity in which the basic flow is oscillatory
in time with a frequency ω0.

First, for the case of a homogeneous fluid, a time-oscillating barotropic shear forcing
may excite a subharmonic parametric resonance of inertial oscillations. Because of
the continuous distribution of inertial oscillation frequencies, this resonance occurs
at critical inertial latitudes yc such that βyc = ±ω0/2. Next the effects of stratification,
characterized by Brunt–Väisälä frequency N , are taken into account. It is shown
analytically (in the asymptotic limit of a weak shear) that the forced temporal oscil-
lation leads to an inertial-parametric instability, when a resonance condition between
the basic flow frequency and the sum of two inertio-gravity free-mode frequencies
is met. This inertial-parametric instability has a well-defined inviscid vertical scale
selection favouring the high-vertical mode mc ∼ 7.45m0, where m0 = βN/ω2

0 is the
equatorial vertical mode characteristic of frequency ω0. The viscous critical shear of
inertial-parametric instability is lower than the steady inertial instability one.

Finally, this type of setting naturally arises when the basic flow is considered to
be an equatorial wave, so the problem is recast with the nonlinear adjustment of the
vertically sinusoidal basic state of a zonally symmetric mixed Rossby–gravity (MRG)
wave. Initial-value numerical simulations show that the same inertial-parametric
instability exists leading to a resonant subharmonic excitation of free modes with
vertical scales 7 and 8 times smaller than the basic-state wave. A simplified dynamical
model of the instability is introduced, demonstrating that the oscillatory nature of the
shear with height for the MRG wave necessarily implies a resonance between distinct
vertical modes, the most unstable ones being modes 7 and 8 for a large enough Froude
number of the MRG wave. The nonlinear action of the instability is described in
terms of angular momentum and potential vorticity changes: a significant mixing
due to the breaking of the excited high vertical modes creates a vertically averaged
westward flow at the equator and extra-equatorial eastward flows. The ideas exposed
may play a part in explaining layering phenomena and the latitudinal structure of
the zonal flow in the equatorial oceans below the thermocline.

1. Introduction
The deep equatorial ocean offers many examples of phenomena where a substantial

latitudinal homogenization of angular momentum appears as the background large-
vertical-scale ambient state (Hua, Moore & le Gentil 1997; Bourlès et al. 2003), upon
which other smaller vertical scale phenomena such as Equatorial Deep Jets (Firing
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1987; Gouriou et al. 2001) or extended density layering (d’Orgeville et al. 2004)
appear to be superposed. The issue of angular momentum homogenization has been
mostly studied in the context of the Earth’s and other planets’ atmospheres (e.g.
Held & Hou 1980) in a zonally symmetric steady context. Such work brings out
the characteristic spatial scales of homogenization of angular momentum for a given
planet’s atmosphere as being related to its equatorial radius of deformation, a quantity
governed by the magnitudes of stratification and rotation, which will characterize the
meridional extent of the meridional Hadley cells that are set up in the presence of an
equator–pole temperature difference. Such cellular motions in the meridional plane
are indeed likely to mix laterally angular momentum and a related quantity, namely
potential vorticity, in the general case of a stratified and rotating fluid. Such concepts
have been applied in an oceanic context by Marin, Hua & Wacongne (2000), Hua,
Marin & Schopp (2003) and Marin, Schopp & Hua (2003) to explain the temperature
and potential vorticity homogenization observed just below the main thermocline in
both the Pacific and Atlantic equatorial oceans.

A plausible underlying mechanism which could be responsible for this potential
vorticity homogenization could be inertial instability, for which a necessary condition
for a zonally symmetric equatorial steady flow is that potential vorticity (PV ) is
of opposite sign to the Coriolis parameter f in a given hemisphere, i.e. f PV < 0
(Hoskins 1974; Dunkerton 1981; Stevens 1983). Recent studies of nonlinear regimes
of equatorial inertial instability are the work of Hua et al. (1997) and Griffiths
(2003a , b), and more generally for nonlinear symmetric instability (Mu, Shepherd &
Swanson 1996).

However, for the deep equatorial ocean, there is no known source of stationary
shear which can create regions of f PV < 0, but, on the other hand, a ubiquituous
feature is the presence over the entire fluid depth of periodic signals, usually identified
as equatorial free waves (e.g. Gill 1982). Such temporal variability due to wave activity
could induce periodic shear and this is precisely the mechanism we want to investigate
here.

A periodic forcing of equations which can sustain free oscillating solutions is
well-known to be propitious to parametric resonances, an archetype being provided
by Mathieu’s equation which can lead to subharmonic resonances at frequencies
lower than the forcing frequency. There has been a recent renewal of interest in
the study of parametric instability in geophysical flows, either for stratified flows for
the parametric excitation of internal waves (Benielli & Sommeria 1998; Staquet &
Sommeria 2002), or for rotating shear flows (e.g. Poulin, Flierl & Pedlosky 2003, and
references therein) or for both stratified and rotating flows for the baroclinic instability
problem (Pedlosky & Thomson 2003; Pavec, Carton & Swaters 2005). Parametric
instability has also been identified as the generic mechanism underlying elliptic
instability (e.g. McWilliams & Yavneh 1998; Kerswell 2002) and also underlying
the layering commonly seen in turbulent stratified flows (Leblanc 2003). In the
same vein, Majda & Shefter (1998a, b) have invoked the parametric destabilization
of internal waves to be at the origin of numerous layering observations in the
ocean.

All these points motivate the main questions which are addressed in the present
work:

(i) In view of the specific property of equatorial regions that a continuous range
of inertial oscillation frequencies exists, can such motions be parametrically excited?

(ii) Can large-vertical scale equatorial free waves lead to parametric resonances
and impact angular momentum distribution?
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A necessary ingredient for equatorial inertial instability being the existence of lateral
shear, which, for a zonal flow, will cause angular momentum to reach its maximum
away from the equator, these two questions could be addressed by considering the
simplest generalization of the equatorial steady inertial instability problem which is
the case of an equatorial oscillating shear flow.

This is precisely what is done in the present work, in treating a sequence of problems
of increasing complexity in which the basic flow is oscillatory in time with a frequency
ω0. The idealized case of a barotropic oscillating shear forcing is investigated for an
homogeneous fluid in § 2, then for a stratified fluid in § 3. Results of previous sections
about the main characteristics of inertial-parametric instability are used in § 4 for the
study of the nonlinear adjustment of the simplest zonally symmetric equatorial free
wave with such lateral shear, the mixed Rossby–gravity (MRG) wave. The final state
of the nonlinear adjustment is described in terms of angular momentum and potential
vorticity changes in § 5, and finally § 6 summarizes our findings and discusses their
importance for geophysical flows.

2. Homogeneous fluid case: resonance of inertial free motions at critical inertial
latitudes

Throughout this paper, R̃ corresponds to a basic-state variable, r ′ to its perturbation

and r the total field such that r = R̃ + r ′. The terms u, v and w are, respectively, the
zonal, meridional and vertical velocities. The terms x, y, z and t denote, respectively,
the zonal, meridional, vertical and time coordinates. We shall assume zonally
symmetric motions (∂/∂x = 0), both for the basic-state variables and for perturbations.

In this section and the following one, we consider the idealized forced case of an
oscillating strictly zonal shear flow in geostrophic balance

Ũ = γy cos(ω0t), Ṽ = 0, (2.1)

f Ũ = − 1

ρ0

∂p̃

∂y
, (2.2)

∂Ũ

∂t
= F (y, t), (2.3)

where γ is the shear, ω0 the pulsation, f = 2Ω sin φ the Coriolis parameter (Ω
denoting the Earth’s rotation rate and φ the latitude), ρ0 the reference density of the
Boussinesq approximation, p̃ is the barotropic pressure and F is a prescribed external
forcing.

Such restrictive conditions for the forcing set-up will be relaxed in § § 4 and 5
concerning the stability of the free equatorial mixed Rossby–gravity wave. The purpose
of this set-up is to characterize analytically the spatial meridional and vertical scales
of the problem that will be useful for the last sections of the paper.

2.1. f -plane vs. equatorial β-plane: critical latitude selection

In an f -plane framework (f = f0), the horizontal trajectory of a fluid parcel which
is only subject to the Coriolis force is an inertial circular path, which is commonly
observed in geophysical flows. Such a free oscillation should be susceptible to being
parametrically excited for an appropriate periodic forcing.

In order, as a first step, not to have to consider effects due to stratification, we
first restrict ourselves to the case of a homogeneous fluid forced by the basic state
(2.1)–(2.3) and, moreover, to the case of free inertial oscillations (for which pressure
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gradient forces are dropped: their effects will be taken into account in the case of a
stratified fluid, § 3).

Denoting the total derivative as d/dt = ∂/∂t + v′∂/∂y + w′∂/∂z, (2.1)–(2.3) for the
basic state imply that velocity perturbations (u′, v′) obey

(d/dt)u′ − (f0 − γ cos(ω0t))v
′ = 0,

(d/dt)v′ + f0u
′ = 0.

Eliminating u′ in these equations yields

d2

dt2
v′ +

(
f 2

0 − f0γ cos(ω0t)
)
v′ = 0,

which is the well-known Mathieu’s equation (e.g. Nayfeh & Mook 1979).
The flow will exhibit parametric resonances depending on the values of the

oscillating shear frequency ω0 and on its strength γ . The largest resonance is
subharmonic and occurs for f0 = ω0/2. Other resonances in Mathieu’s equation
are also possible for f0 = pω0/2, with integer values of p � 2, but correspond to
weaker growth rates.

For the f -plane case, the inertial frequency is unique and the excitation frequency
spectrum which can induce parametric resonances is discrete. In contrast, for an
equatorial β-plane (f = βy), there is a continuous inertial frequency distribution
which should allow the possibility of parametric resonance for any value of the
excitation frequency. This is the set-up that we shall consider next.

Latitudinal displacements y of a fluid parcel with velocity perturbations (u′, v′) are
such that

d

dt
y = v′,

d

dt
v′ + βyu′ = 0,

d

dt
u′ − (βy − γ cos(ω0t))v

′ = 0.

Introducing non-dimensional quantities y = (ω0/β)z1, v′ = (ω2
0/β)z2, u′ = (ω2

0/β)z3,
γ = ω0γ

∗ and t = t∗/ω0 (hereinafter asterisks are dropped) leads to

d

dt

z1

z2

z3

 =

 z2

−z1z3

z1z2 − γ cos(t)z2

, (2.4)

which corresponds to a nonlinear system which is first-order in time. Equilibrium
points are (z1, z2, z3) = (0, 0, ui) and (z1, z2, z3) = (yi, 0, 0). A stability analysis can be
performed in the vicinity of these equilibrium points.

(i) (z1, z2, z3) = (δy, δv, ui + δu): a linear stability analysis of the above system
yields an equation for the evolution of δy at zeroth order

d2

dt2
δy + uiδy = 0,

which is stable for ui > 0 and unstable for ui < 0. (0, 0, ui) corresponds to a fluid
parcel initially located at the equator with no meridional velocity. For ui > 0, the
fluid parcel corresponds to a maximum of angular momentum located at the equator
and thus is inertially stable, whereas for ui < 0 it will be inertially unstable. Note that
such instability is independent of the temporal forcing.
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Figure 1. Direct numerical integration of (2.4) with δyi = 0.02, δvi = 0.01 for the homogeneous
case. (a) γ = 0.1 and yi = 0.25 non-resonant latitude. (b) γ = 0.1 and yi = 0.5 resonant latitude.
(c) γ = 0.2 and yi = 0.5 resonant latitude. The axes are time t (abcissa) and latitudinal position
z1 = y (ordinate).

(ii) (z1, z2, z3) = (yi + δy, δv, δu): a linear stability analysis yields a Mathieu-type
equation for the evolution of δv at zeroth order

d2

dt2
δv +

(
y2

i − yiγ cos(t)
)
δv = 0. (2.5)

Possible resonances thus depend on the latitudinal position of the equilibrium point
yi and on the shear strength γ , the strongest resonance occurring at yi = ±1/2.

In contrast to the f -plane case which could resonate or not, depending on the value
of the excitation frequency ω0, in the equatorial β-plane case, for a given value of the
excitation frequency, there will always exist latitudes yi which will resonate inertially.
Such selection of resonant latitudes by an oscillating shear flow can be illustrated by
a direct numerical integration of the fully nonlinear system (2.4).

Figure 1 presents the temporal evolution of the latitudinal position of a fluid
parcel, initially at yi + δyi , which is given a weak initial impulse δvi . Initial conditions
for integration of system (2.4) are thus zi = (yi + δyi, δvi, 0). Figure 1(a) displays a
simple inertial oscillation about latitude yi with a frequency close to yi (dimensionally
corresponding to βyi). On the contrary, figure 1(b) illustrates a resonance about
yi =0.5: inertial oscillations are parametrically amplified as predicted by (2.5), until
nonlinear terms come into play to restabilize the motion. However, for increased
values of γ (figure 1c), the instability enables parcel motions across the equator: the
parcel trajectory between the two critical latitudes yi = ±0.5 seems to become chaotic.

We have shown in the case of a homogeneous fluid the possibility of an equatorial
parametric instability induced by an oscillating zonal shear flow: a Mathieu-like
resonance of inertial oscillations appears at the critical latitude yc where the local
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inertial frequency f = βy is half the excitation frequency 2f ∼ ω0 ⇔ yc ∼ ω0/2β . In
the deep equatorial ocean, a typical time scale of the observed variability is 15 days,
which corresponds to critical latitudes around ±1◦. Because of the latitudinal limit
for the validity of the equatorial β-plane approximation, a realistic upper bound for
ω0 would be 2π/day for critical latitudes around ±15◦.

For this homogeneous fluid study, the only restoring force at the origin of free
oscillations is the Coriolis force due to the Earth’s rotation. In the next section, we
shall consider the same problem, but for a stratified fluid, where baroclinic pressure
gradients can modify the fluid adjustment, but for which a subharmonic inertial
resonance is still the main driving mechanism.

3. Stratified fluid case: subharmonic resonance of inertio-gravity waves
We next take into account the influence of stratification and denote the background

Brunt–Väisälä frequency N , with N2 = −(g/ρ0)(dρ̄/dz), where g is gravity and ρ̄(z) is
the background mean density at a given depth of the fluid at rest.

Zonally symmetric conditions imply the continuity equation ∂v′/∂y + ∂w′/∂z =0,
and we introduce a meridional streamfunction ψ ′ such that v′ = −∂ψ ′/∂z, w′ = ∂ψ ′/∂y.
Thus, the equations of motion are those of zonal velocity perturbation u′, zonal
vorticity ξ ′ = ∇2ψ ′ and rescaled density anomaly b′ = (g/ρ0)ρ

′

∂u′

∂t
+ J (ψ ′, u′) + (βy − γ cos(ω0t))

∂ψ ′

∂z
= Du′, (3.1)

∂ξ ′

∂t
+ J (ψ ′, ξ ′) − βy

∂u′

∂z
= −∂b′

∂y
+ Dξ ′, (3.2)

∂b′

∂t
+ J (ψ ′, b′) − N2 ∂ψ ′

∂y
= Db′, (3.3)

where J is the Jacobian operator J (R, S) = (∂R/∂y)(∂S/∂z) − (∂R/∂z)(∂S/∂y) and
terms D correspond to dissipative/diffusive effects. The total fields are the zonal
velocity u = γy cos(ω0t) + u′, the meridional streamfunction ψ = ψ ′ and the rescaled
density anomaly b = b′.

3.1. Linear parametric instability

The non-dimensionalization of the equations of motion governing a given vertical
mode m, t =

√
(m/Nβ)t∗, y =

√
(N/mβ)y∗, γ =

√
(Nβ/m)γ ∗, ω0 =

√
(Nβ/m)ω∗

0, (aste-
risks are dropped in the rest of this section), yields for the hydrostatic (ξ ′ = ∇2ψ ′ ∼
∂2ψ ′/∂z2) inviscid (D = 0) linearized zonal vorticity equation

∂2ψ ′

∂t2
+ y2ψ ′ − ∂2ψ ′

∂y2
− γy cos(ω0t)ψ

′ = 0. (3.4)

The meridional streamfunction ψ ′(y, t) is projected onto the basis ϕn(y) = Hn(y)
exp(−y2/2) where Hn(y) is the nth Hermite polynomial

ψ ′(y, t) =
∑
n�0

ϕn(y)φn(t).

Since the meridional modes verify ∂2ϕn/∂y
2 −y2ϕn = −δ2

nϕn with δ2
n = 2n+ 1, this leads

to ∑
n�0

(
ϕn

∂2φn

∂t2
+ δ2

nϕnφn − γyϕnφn cos(ω0t)

)
= 0.
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Making use of the Hermite polynomials recurrence relation yHn = nHn−1 + Hn+1/2
and of the Hermite functions orthogonality (

∫
ϕl(y)ϕn(y) dy = 0 if l 	= n and 2nn!

√
π

if l = n), each meridional mode n verifies

∂2φn

∂t2
+ δ2

nφn = γ
(

1
2
φn−1 + (n + 1)φn+1

)
cos(ω0t), (3.5)

where φ−1 = 0 is assumed.
Denoting

Φ(t) =


φ0(t)
φ1(t)

..

..

φn(t)
..

, ∆2 =



δ2
0 0

0 δ2
1 0
.. .. ..

.. .. ..

0 δ2
n 0
.. ..

,

H =



0 1
1
2

0 2
.. .. ..

.. .. ..
1
2

0 n + 1
.. ..

,

the system (3.5) can be rewritten as an infinite dimensional system that only involves
time-dependent coefficients

∂2

∂t2
(Φ) + [∆2 − γH cos(ω0t)](Φ) = 0.

Except for the infinite dimension of the system, the structure of the above equation is
similar to the Mathieu-type equation (2.5). We may thus anticipate that the excitation
frequency ω0 will determine which meridional mode n can resonate, and that the
shear magnitude γ will control the growth rate of the instability. This is precisely the
purpose of the multiple-scale analysis of § 3.1.1.

3.1.1. Multiple-scale analysis for γ 
 1

If γ = 0, each meridional mode n is independent of other modes

∂2φn

∂t2
+ δ2

nφn = 0.

Each free mode oscillates at frequency δn. Such oscillations result from the
combination of two restoring forces due to the stratification N and to the Earth’s
rotation f =βy, while their equatorial trapping results from the β-effect.

Following Nayfeh & Mook (1979, p. 307), we shall perform a multiple-scale analysis
for a given oscillating shear frequency ω0 such that γ 
 1.

The slow time variable is defined as τ = γ t . For each meridional mode n

φn(t, τ ) = A0
n(t, τ ) + γA1

n(t, τ ) + O(γ 2),

(A0
−1 = A1

−1 = 0 is assumed).
The zeroth-order equation is

∂2A0
n

∂t2
+ δ2

nA
0
n = 0,
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thus

A0
n(t, τ ) = Bn(τ ) exp(iδnt) + c.c.

(B−1 = 0 is assumed and c.c. denotes the complex conjugate since Bn is complex).
The first-order equation is

∂2A1
n

∂t2
+ δ2

nA
1
n = −

(
2
∂2A0

n

∂τ∂t

)
+

(
1
2
A0

n−1 + (n + 1)A0
n+1

)
cos(ω0t),

thus, replacing A0
n with its expression found at zeroth order,

∂2A1
n

∂t2
+ δ2

nA
1
n = −2iδn

∂Bn

∂τ
exp(iδnt)

+ 1
4
Bn−1(τ )(exp(i(δn−1 + ω0)t) + exp(i(δn−1 − ω0)t))

+ 1
2
(n + 1)Bn+1(τ )(exp(i(δn+1 + ω0)t) + exp(i(δn+1 − ω0)t)) + c.c.

Secular terms in t in the order 1 equation correspond to the right-hand side forcing
terms that are solutions of the homogenous equation and are proportional to exp(iδnt)
or c.c. The cancellation of such secular terms yields the time-evolution equation for
Bn as a function of τ . We can distinguish several cases.

(i) Non-resonant meridional modes
For a meridional mode n such that ω0 is far from δn±1 ± δn, secular terms will cancel
out if ∂Bn/∂τ = 0, thus

Bn(τ ) = Bn.

The solution A1
n is then

A1
n(t, τ ) = − 1

4
Bn−1

(
exp(i(δn−1 + ω0)t)

(δn−1 + ω0)2 − δ2
n

+
exp(i(δn−1 − ω0)t)

(δn−1 − ω0)2 − δ2
n

)
− 1

2
(n + 1)Bn+1

(
exp(i(δn+1 + ω0)t)

(δn+1 + ω0)2 − δ2
n

+
exp(i(δn+1 − ω0)t)

(δn+1 − ω0)2 − δ2
n

)
+ c.c.

The order 1 response will be independent of τ .
(ii) Possible resonant meridional modes

For a mode n such that ω0 is close to ωr = δn±1 ± δn other terms become important
and can lead to two cases of resonance. Introducing the detuning bγ of the forcing
frequency as

ω0 = ωr + bγ + O(γ 2).

(a) ωr = δn+1 + δn. Combination of the summed type.
Denoting with † a complex conjugate, differential equations for the slow time
evolution of modes n and n+ 1 are

∂Bn

∂τ
= −i

1

2δn

n + 1

2
B†

n+1(τ )eibτ ,

∂Bn+1

∂τ
= −i

1

2δn+1

1

4
B†

n(τ )eibτ .

Non-trivial solutions of the system are

Bn(τ ) = ane
−iλτ ,

Bn+1(τ ) = an+1e
i(λ†+b)τ ,
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with

λ = − 1
2

[
b ±

(
b2 − n + 1

8

1

δnδn+1

)1/2 ]
.

Solutions remain bounded if and only if

b2 >
n + 1

8

1

δnδn+1

.

For b2 = (n + 1)/8δnδn+1, the solution has an algebraic growth behaviour like
τe−ibτ/2. In the (ω0, γ )-plane, the marginal curve separating stable and unstable
cases is

ω0 = δn + δn+1 ± γ

(
n + 1

8

1

δnδn+1

)1/2

+ O(γ 2).

For b2 < (n + 1)/8δnδn+1, mode n has an exponential growth rate

µ =
1

2

√
γ 2

n + 1

8

1

δnδn+1

− (ω0 − δn − δn+1)2

(where ω0 = δn+1 + δn +bγ has been used).
(b) ωr = δn+1 − δn. Combination of the difference type.
A similar analysis to the previous case shows that there can be no resonance.

At leading order in γ , the only possible resonances correspond to ωr = δn + δn+1,
a combination resonance of the summed type. They correspond to a subharmonic
resonance similar to the classical Mathieu equation, since a frequency ω0 is able to
excite a combination of modes with lower frequencies δn and δn+1 <ω0. Figure 2
provides the non-dimensional growth rate as a function of γ and ω0 for a given
vertical mode m.

Thus for a given vertical mode, we have recovered the properties of Mathieu’s
equation: (i) the excitation frequency ω0 determines which meridional mode n can
resonate, and (ii) the shear magnitude γ controls the instability growth rate, but not
which mode is excited.

The dimensional growth rate of an unstable vertical mode m =pNβ/ω2
0 and the

corresponding meridional mode n is

µ = 1
2
γ

√√√√ (n + 1)

8
√

(2n + 1)(2n + 3)
− ω2

0

γ 2

(
1 −

√
2n + 1

p
−

√
2n + 3

p

)2

(3.6)

(where p is a positive real number and in the limit γ 
 ω0/
√

p).
Note that higher-order effects in γ q (q > 1) can be evaluated for improving the

accuracy of the transition curve and also for assessing other resonances of order q;
superharmonic resonances as in Mathieu’s equation such that qωr = δn + δn+1 will also
appear at order q , but with much weaker growth rates as in the classical Mathieu’s
case (for q = 2 terms see Nayfeh & Mook 1979, p. 310).

Vertical viscosity/diffusion effect

Taking into account vertical viscosity amounts to replace ∂/∂t by ∂/∂t + ν(∂2/∂z2)
dimensionally. For a given vertical mode m, the non-dimensional equation becomes

∂2ψ ′

∂t2
+ 2ε

∂ψ ′

∂t
+ ε2ψ ′ + y2ψ ′ − ∂2ψ ′

∂y2
− γy cos(ω0t)ψ

′ = 0,
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Figure 2. Growth rate µ for an oscillating shear. All quantities are non-dimensionalized
assuming a given vertical mode m. Solid line : transition curves. Dashed lines : contour
interval every 0.01. (a) Visualization in the global (ω0, γ )-plane. (b) Zoom of the unstable zone
corresponding to n= 0 and n= 1 showing the comparable growth rates for each resonance
band for a given vertical mode.

with ε =
√

ν2m5/N0β . Each meridional mode satisfies

∂2φn

∂t2
+ 2ε

∂φn

∂t
+

(
δ2
n + ε2

)
φn = γ

(
1
2
φn−1 + (n + 1)φn+1

)
cos(ω0t).

Introducing the new function χn(t) = φn(t) exp(−εt), we obtain the same equation
as in the previous case,

∂2χn

∂t2
+ δ2

nχn = γ
(

1
2
χn−1 + (n + 1)χn+1

)
cos(ω0t).

Previous inviscid resonance results will hold, provided µ>ε, or µ > νzm
2

dimensionally, which means that for a given shear strength γ , vertical viscosity
will inhibit the parametric resonance of vertical modes that are too high.

Physical interpretation

In the absence of forcing, the solutions of the zonally symmetric system are the
mixed Rossby–gravity and inertio–gravity waves. The existence of such free oscillating
modes is due to the combined action of two restoring forces, stratification N and
Earth’s rotation f = βy. It has been shown in § 2 that a barotropic zonal shear
oscillating at frequency ω0 brings about the possibility of a parametric instability that
involves some of the free modes. The free-mode selection will be performed by the
forcing frequency ω0.

In the case of small amplitude shear γ , the free modes that can be perfectly resonant
are countably infinite and correspond to vertical modes m for which there exist an n
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Figure 3. Meridional structure of the perturbation zonal velocity u′ for perfectly resonating
vertical modes such that 2π/ω0 = 15 days ( N = 2×10−3 s−1 and β = 2.29 × 10−11m−1 s−1) in the
stratified case. Top to bottom n= 0, 1, 2, 3. Associated vertical wavelengths are, respectively,
h = 433m, 205m, 136m, 111m. Continuous lines correspond to meridional mode n+ 1 and
dotted lines to meridional mode n. Latitudes such that βyc = ±ω0/2 are indicated by full
vertical lines. Amplitudes are arbitrary.

such that the detuning is exactly zero

ω0 = (
√

2n + 1 +
√

2n + 3)

√
βN

m
. (3.7)

Their resonance with the basic state will involve the combination resonance of the
summed type of two free meridional modes n and n+ 1 for a given vertical mode m.

This mode selection is linked to the latitude where the inertial frequency βy is half
the forcing frequency yc = ω0/2β; figure 3 presents the meridional structure of zonal
velocity for the four lowest vertical modes that will resonate for a fixed oscillating
shear frequency ω0. It is obvious in this figure that extrema of zonal velocity occur
near the latitudes yc = ± ω0/2β , which are marked by a vertical line. As already seen
in § 2, such latitudes are those where parametric instability occurs in the barotropic
case. We are therefore led to the inference that the ‘driving’ of the instability in this
stratified case is actually an inertial resonance. The main role of stratification is to
determine how the baroclinic meridional pressure gradient can adjust itself to such
an inertial resonance: its adjustment leads to a vertical mode selection (3.7).

The ‘driving’ of the instability by a barotropic oscillating shear modifies the effective
Coriolis force (term (βy − γ cos(ω0t))v in (3.1)) that acts on the perturbation. Since
this effective Coriolis force is the restoring force that appears in Mathieu’s equation,
the parametric instability which is studied here corresponds to a resonance of free
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inertial oscillations, rather than a resonance of free internal waves as in Majda &
Shefter (1998a, b).

We propose to name such resonant instability an equatorial inertial-parametric
instability because (i) of its overall similarity with the classical steady inertial instability
triggered by non-zero shear at the equator, and (ii) it corresponds to the resonant
excitation of free inertio-gravity waves of the equatorial β-plane.

3.2. Parametric instability (γ 
 ω0) vs. inertial instability limit (γ � ω0)

For large shear values such that γ � ω0, we recover the equatorial inertial instability
limit since the oscillating shear period is much longer than the inertial instability
growth rate and the latter will be able to develop fully before the shear reverses sign.
Hereinafter we briefly summarize the main results of linear inertial instability and
contrast them with those of linear parametric instability documented in the previous
subsection.

(a) Inertial instability (γ � ω0)

The growth rate of linear inviscid inertial instability is a function of the vertical
mode m and of meridional mode n (Dunkerton 1981; Stevens 1983)

µ(m, n) =

√
γ 2

4
− (2n + 1)

Nβ

m
.

If m > 4Nβ/γ 2, the growth rate µ(m, 0) is the largest for the smallest vertical scales
(m → ∞) and tends toward

µII
max = 1

2
γ.

Linear inertial instability thus has an ultraviolet character, with an excitation of a
continuous spectrum of vertical modes ranging from infinity to the lowest inertially
unstable mode

mb =
4Nβ

γ 2
. (3.8)

The range of inertially unstable vertical modes is continuous (dashed line in figure 4a)
with no clear vertical scale selection. This range directly depends on the shear strength
γ , as seen in (3.8).

In the presence of vertical viscosity and diffusion, Dunkerton (1981) shows that
there exists a critical shear value γc for linear inertial instability

γ II
c =

√
5(2νN2β2)1/5,

associated with a critical vertical mode

mII
c =

(
Nβ

4ν2

)1/5

.

Both γ II
c and mII

c only depend on external parameters (β, N) and on viscosity ν.
Viscosity thus introduces a vertical mode selection for inertial instability (solid line
in figure 4a). See Griffiths (2003 b) for further discussion on viscous vertical scale
selection.

(b) Parametric instability (γ 
 ω0)

In the linear inviscid parametric instability case, a local maximal growth rate
appears for each mode (n, m) that satisfies the exact resonant condition (3.7), and the
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global maximum growth rate is

µPI
max =

γ

4
√

2
√

3
∼ 1

8
γ,

corresponding to the lowest vertical unstable mode with n= 0,

mp = (1 +
√

3)2
βN

ω2
0

. (3.9)

Linear inviscid parametric instability thus leads to a discrete vertical mode spectrum
(dashed line in figure 4b) and the inviscid mode selection is only a function of the
forcing frequency ω0 and is independent of the shear amplitude γ .

In the presence of vertical viscosity and diffusion, we can introduce an approximate
critical shear for parametric instability based on the destabilization of the lowest
vertical mp mode (µ(mp) >νm2

p) so that

γ PI
c ∼ 8νβ2N2 (1 +

√
3)4

ω4
0

.

In contrast to the inertial instability case for which γ II
c depends only on external

parameters (β, N, ν), γ PI
c also depends on the dynamical forcing through ω4

0. (The
faster the pulsation forcing is, the lower is the critical shear.) Moreover,

mPI
c = mp = (1 +

√
3)2m0 ≈ 7.45m0, m0 =

βN

ω2
0

, (3.10)
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is independent of viscosity ν (in contrast to mII
c ), and is solely related to m0, the

equatorial vertical scale characteristic of frequency ω0. This unstable lowest vertical
mode is clearly favoured by dissipation (solid line in figure 4b).

Although linear parametric instability provides a smaller growth rate than linear
inertial instability, its properties are more physically relevant: (i) there is a clear linear
inviscid vertical mode selection with a discrete spectrum which solely depends on
the forcing pulsation ω0; (ii) moreover, vertical viscosity enhances this vertical scale
selection towards the lowest vertical unstable mode; (iii) finally, in the viscous case,
the critical shear is reduced when the forcing frequency is faster.

4. Parametric destabilization of zonally symmetric mixed Rossby–gravity wave
The previous section has provided evidence that a barotropic oscillating zonal

shear flow could excite parametric resonances of high vertical free modes of the
equatorial β-plane. For atmospheric and oceanic conditions, such an oscillating shear
flow could be ascribed to large vertical-scale equatorial waves. For zonally symmetric
conditions, the simplest wave presenting such oscillating shear is the mixed Rossby–
gravity (MRG) wave, which corresponds to an oscillating shear flow which is also
of alternating sign in the vertical direction. We can wonder if such waves can also
induce parametric excitation of higher vertical modes.

We shall investigate the case of a basic state corresponding to a standing MRG
wave. The MRG wave frequency is ω0, its vertical wavenumber is m0 and we define

c0 =
N

m0

,

λ0 =

√
N

βm0

,

(Ṽ , W̃ ) =

(
−∂Ψ̃

∂z
,
∂Ψ̃

∂y

)
.

For a standing MRG wave,

(Ũ , B̃, Ψ̃ ) = V0exp
(
−

(
y2/2λ2

0

))
×

(
y

λ0

cos(ω0t) cos(m0z), N
y

λ0

cos(ω0t) sin(m0z),
1

m0

sin(ω0t) sin(m0z)

)
.

4.1. Nonlinear initial-value simulation

Such an MRG wave is prescribed with small random perturbations at t = 0 as the
initial condition of the fully nonlinear system integrated with the numerical model of
Hua et al. (1997)

∂u

∂t
+ J (ψ, u) + βy

∂ψ

∂z
= Du, (4.1)

∂ξ

∂t
+ J (ψ, ξ ) − βy

∂u

∂z
= −∂b

∂y
+ Dξ, (4.2)

∂b

∂t
+ J (ψ, b) − N2 ∂ψ

∂y
= Db, (4.3)

Note that since (u, b, ψ) denotes the total fields, they include the initialized MRG
wave signal.
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The domain of integration spans 1000 km on each side of the equator and
the domain height corresponds to a vertical wavelength of the MRG wave
H = 2π/m0 = 1600 m. Spatial scales Ly =O(100 km) and Hz = O(100 m), require a very
anisotropic grid and therefore a hydrostatic assumption. The grid size is dy = 6 km and
dz = 12.5 m. Periodic conditions in the vertical are assumed. The constant stratification
background is N = 3 × 10−3 s−1 and the wave frequency is taken as ω0 = 4.17 × 10−6 s−1

(its period T ≈ 15 days is typical of deep oceanic MRG wave observations, e.g. Bunge
et al. 2005). The radius of deformation of the basic MRG wave is λ0 = 1.8 × 105 m
and its celerity is c0 = 0.76 m s−1.

Only very small dissipation and diffusion, necessary for the numerical stability of
the model, are acting (D = νz(∂

2/∂z2) + ν4h(∂
4/∂y4) with νz = 10−6 m2 s−1 and ν4h =

1 × 108 m4 s−1), and we recall that no external forcing is applied. Such initial-value
simulation is therefore nearly conserving the invariants of the system such as angular
momentum.

Denoting γ as the maximum shear value of the MRG wave, the Froude number
of the basic-state wave is

α =
γ

ω0

=
V0

c0

. (4.4)

In this section and the following one, results are presented for a MRG wave of
amplitude V0 = 0.15 m s−1, thus implying a Froude number of α ∼ 0.2. We have
furthermore checked that the results which are reported next are also valid for α

ranging from 0.03 to 0.4.

Transient adjustment phase

It is well known that linear waves of the equatorial β-plane are not exact solutions
of the nonlinear equations of motion, in contrast to the linear quasi-geostrophic waves
of the mid-latitude β-plane or with linear internal waves. As expected, the numerical
simulations show in a first phase that the flow adjusts itself by emitting gravity
waves with a broad vertical mode spectrum. Low vertical modes propagate far away
from the equator whereas high vertical modes remain trapped between the turning
latitudes yt = ±ω0/β (Anderson & Gill 1979). These equatorially-trapped waves, which
are observed to have high meridional wavenumbers, are compatible with the WKB
analysis of Gill (1982, p. 441). They have frequencies ω = pω0 with integer p � 1,
and are thus not subharmonic resonantly excited. Although their amplitude is found
to grow initially, they saturate nonlinearly to weak amplitude after O(1500 days).
Although the saturation amplitude is found to be a growing function of the Froude
number α, this first adjustment phase has little impact on the final adjustment phase,
for the entire Froude number range that has been explored.

Final adjustment phase

After the observed saturation of the trapped gravity waves, high vertical inertio-
gravity modes are excited with a slow growth rate which is, however, sustained
so that they eventually dominate the baroclinic response which is superposed on
the adjusted basic state MRG wave. In contrast to the trapped gravity waves, the
observed inertio-gravity waves have low meridional wavenumbers.

Figure 5 displays the zonal velocity and density perturbation fields of such modes for
their nonlinear saturation after filtering out the m0 mode signal with the same vertical
wavelength as the basic state MRG wave. Extrema of zonal velocity perturbations
are located near the critical inertial latitudes (yc = ±ω0/2β). The filtered flow is
dominated by vertical modes m/m0 = 7 and 8, as corroborated by the clear peak
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Figure 6. Spectra of u at the critical inertial latitude yc = ±ω0/2β for the MRG wave
initial-value simulation. (a) Vertical mode spectra at different instants of the simulation.
(b) Frequency spectra of vertical modes 7 (dashed line) and 8 (solid line) during the final
adjustment phase. The vertical dash-dotted line indicates the frequency value ω0 of the basic
state MRG wave.

displayed by the vertical mode spectra at different instants of the simulation shown in
figure 6(a). Moreover, a projection of the signal onto Hermite functions reveals that
the vertical mode m/m0 = 7 corresponds to a meridional wavenumber n= 1, while
vertical mode m/m0 = 8 has a meridional wavenumber n= 0. Since a structure with
vertical wavenumber m and meridional mode n has frequency ωn,m =

√
(2n + 1)Nβ/m,
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a summed resonance of the structures n= 1, m =7m0 and n= 0, m =8m0 is possible

ω{1,7m0} + ω{0,8m0} ≈ ω0, (4.5)

involving different meridional wavenumbers of two distinct vertical modes. The
frequency spectra of both vertical modes shown in figure 6(b) confirms the possibility
of a parametric combination resonance of the summed type.

Energy exchange

In order to study the energy exchanges that take place during the initial-value
simulation, plots of energy as a function of time and for various vertical modes
are provided in figure 7. Note that figure 5 is plotted at 3500 days at which modes
m/m0 = 7 and 8 have undergone a significant growth (figure 7b).

As seen in figure 7(a), up to 3000 days the total amount of energy (dashed line)
corresponds almost entirely to the energy of the vertical mode m0 of the MRG wave
(solid line). The transient adjustment phase has therefore weakly perturbed the flow.
Between 3000 and 4000 days, the sustained growth of vertical modes m/m0 = 7 and 8
is obvious (figure 7b, solid line), and extracts its energy from the m0 energy which
deviates from the total amount of energy.

Near 4000 days, modes m/m0 = 7 and 8 break and this has two consequences: (i) a
strong dissipation of the total amount of energy (figure 7a, dashed line) and (ii) an
irreversible growth of the barotropic mode (figure 7c).

Pursuing the integration further in time, a slow dissipative/diffusive decay of all
the signals is observed, but note that vertical modes m0, 7m0, 8m0 and the barotropic
mode predominate.



278 M. d’Orgeville and B. L. Hua

We shall next provide a rationale for the growth of modes m/m0 = 7 and 8 in terms
of a subharmonic inertial-parametric instability. The consequences of the breaking of
these modes in terms of redistribution of angular momentum are discussed in § 5.

4.2. Linear parametric destabilization of the mixed Rossby–gravity wave

In order to demonstrate the inertial-parametric character of the MRG wave dest-
abilization, the equations of motion are linearized around the basic-state wave. To
make notations clear in this section, 4.2, and in Appendix B.1, we shall denote partial
derivatives with a subscript. The linearized system can be written as

u′
t + βyψ ′

z = −J (Ψ̃ , u′) − J (ψ ′, Ũ ), (4.6)

b′
t − N 2ψ ′

y = −J (Ψ̃ , b′) − J (ψ ′, B̃), (4.7)

ψ ′
zzt − βyu′

z + b′
y = −J (Ψ̃ , ψ ′

zz) − J (ψ ′, Ψ̃zz), (4.8)

where self-advection terms of the MRG wave are discarded, since they correspond to
vertical modes m =2m0 while our focus is on the excitation of high vertical modes.

A direct numerical integration of system (4.6)–(4.8), with small initial random
perturbations, shows the growth of gravity waves with high vertical modes that are
trapped between the turning latitudes, as seen in the first adjustment phase of the
nonlinear initial-value simulation of § 4.1, where they quickly saturate with weak
amplitudes and do not dominate the final state. Since (4.6)–(4.8) are linear, such
excited gravity waves cannot saturate nonlinearly in the present case. A reduction of
the above system is thus required in order to identify possible subharmonic parametric
resonances which dominate the final phase of the nonlinear initial-value simulation.

Since figure 7 suggests important energy exchanges between the MRG wave and
higher vertical modes, let us examine the energy gain by the perturbations in the
above linearized system. Denoting

K ′ =
u′ 2 + v′ 2

2
, P ′ =

b′ 2

2N2
, E′ = K ′ + P ′,

as, respectively, the kinetic, potential and total energy of the perturbation, the domain-
averaged energy budget, for vertically periodic conditions and perturbations going to
0 as y tends to infinity, is

∂

∂t

∫∫
Edydz = −

∫∫ [
u′J (ψ ′, Ũ ) + v′J (ψ ′, Ṽ ) +

b′

N2
J (ψ ′, B̃)

]
dydz.

The above equation reveals that the energy exchange terms are solely due to the
second terms in the right-hand side of system (4.6)–(4.8). They correspond to the
advection by the perturbation of the MRG wave’s properties. The first terms in the
right-hand side of system (4.6)–(4.8) (advection by the MRG wave of the perturbation)
only redistribute spatially the perturbation energy, but do not contribute to its growth
on spatial average, albeit they are much larger in amplitude than the second terms if
a scaling were performed.

The relevant truncated linearized system of equations for perturbations which can
therefore be parametrically excited by the basic-state MRG wave is thus

u′
t + βyψ ′

z = −J (ψ ′, Ũ ), (4.9)

b′
t − N2ψ ′

y = −J (ψ ′, B̃), (4.10)

ψ ′
zzt − βyu′

z + b′
y = −J (ψ ′, Ψ̃zz). (4.11)
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Figure 8. Same as figure 5 for the truncated linearized system, except that the vertical m0

wavenumber has not been filtered out.

Equations (4.9)–(4.11) are integrated forward in time with small initial random
perturbations. An exponential growth is observed. The growing solution of the system
is plotted in figure 8 and is very much like the solution obtained for the nonlinear
initial-value simulation (figure 5). The vertical mode spectra of the solution at different
instants presented in figure 9(a) exhibit a sharp peak centred around vertical modes
m/m0 = 7 and 8. Mode m/m0 = 7 corresponds to a meridional wavenumber n= 1, while
vertical mode m/m0 = 8 has a meridional wavenumber n= 0. The frequency spectra
of both vertical modes shown in figure 9(b) confirm that relation (4.5) is verified
and thus that a parametric resonance takes place involving different meriodional
wavenumbers of two distinct vertical modes.

System (4.9)–(4.11) can be reduced to a single, so-called Eliassen–Sawyer equation
for ψ ′, by eliminating u′ and b′. Performing a scale analysis (see Appendix B), using a
non-dimensionalization based on the spatial and time scales of the perturbation, the
relevant Eliassen–Sawyer equation for the parametric destabilization of the basic-state
MRG wave amounts dimensionally to

ψ ′
zztt + f 2ψ ′

zz + N2ψ ′
yy − f Ũyψ

′
zz + B̃yψ

′
yz = 0. (4.12)

Comparing (4.12) with (3.4) shows that for a vertically variable shear flow, such as the

basic-state MRG wave, besides the term involving lateral shear (f Ũy), the resonance

involves the additional contribution of another component of the flow (B̃y).
A multiple-scale analysis of (4.12) is detailed in Appendix B, taking into account

the (cos(m0z), sin(m0z)) vertical dependence of f Ũy and B̃y . It is shown that the
subharmonic resonance reaches its maximum growth rate for the pair of wavenumbers
n= 1, m =7m0 and n= 0, m =8m0 in the case of a Froude number α > 0.084. It has
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Figure 9. Same as figure 6, but for the truncated linearized system.

been established that such resonances of modes 7 and 8 involve a critical Froude
number αc ≈ 0.03, which has been checked numerically to provide a lower bound
for the excitation in the truncated linearized system simulation as well as in the
initial-value problem of the previous section.

Appendix B proves that (i) the breaking of symmetry with respect to the equator

of the MRG wave, through terms f Ũy and B̃y , allows the resonance of distinct
meridional modes n and n + 1 as for the barotropic shear case (§ 3.1), and that (ii)
the vertical dependence of the MRG wave implies, however, a resonance between
distinct vertical modes in contrast to § 3.1. Moreover, an estimated growth rate for
Froude number α > 0.084 is µ ∼ γ /8 as in § 3.1, and differs by less than 20 % from
that found in the numerical simulations of the truncated linearized system.

5. Angular momentum redistribution
We recall that one of the main motivations of this study mentioned in § 1 is the

possible impact of parametric resonance on angular momentum redistribution.
Section 5.2 discusses the implication of the destabilization of the MRG wave on

angular momentum, but prior to that, we shall recall the most important results of
nonlinear inertial instability that are necessary for its intercomparison with inertial-
parametric instability.

5.1. Nonlinear inertial instability: angular momentum homogenization

Equations (3.1)–(3.3) (where ω0 is set to 0) are integrated with the numerical model
of Hua et al. (1997). Dissipation terms in (3.1)–(3.3) are D = νz(∂

2/∂z2) + ν4h(∂
4/∂y4)

with νz = 10−5 m2 s−1 and ν4h = 1 × 108 m4 s−1 for the numerical stability of the model.
Spatial scales Ly =O(100 km) and Hz = O(100 m), require a very anisotropic grid and
therefore a hydrostatic assumption. The grid size is dy = 3 km and dz =2.5 m. The
domain of integration is periodic in the vertical and symmetric about the equator.
The constant stratification background is N = 2 × 10−3 s−1.

Nonlinear interactions of baroclinic perturbations lead to a barotropic signal

∂

∂t
u′ = − ∂

∂y
u′v′
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Figure 10. (a) Angular momentum M . (b) Potential vorticity Q (continuous lines for fields at
time t , dash-dotted line for initial fields). Vertical lines delimit the linearly unstable band y = 0
and y = 2y0 = γ /β .

(obtained by the vertical average of (3.1) and where R denotes a vertical average of R)
that will restabilize the system (Griffiths 2003a) in the absence of lateral dissipation
of angular momentum.

The final-state barotropic angular momentum distribution (figure 10a, solid line)
has been redistributed laterally by the baroclinic perturbations

∂

∂t
M = − ∂

∂y
Mv′,

(where M = γy + u′ − βy2/2) in order to wipe out the initial extra-equatorial angular
momentum maximum (dashed line) and thus restabilizing the system with respect to
inertial instability. This will also reflect in the vertically integrated potential vorticity
distribution Q = ∇M × ∇ρ which is homogenized to zero inside the unstable latitude
band (figure 10b).

For a large enough supercriticality of the barotropic steady shear γ = Ũ y , such
that γ /γc > 1.19, where γc is the critical shear value set by vertical viscosity/diffusion
(Dunkerton 1981), the nonlinear response will reach large amplitude and occurrences
of density overturning by large-scale meridional cells of small vertical wavelength lead
to a layering regime (see figure 11 and Appendix A). Such a limit is close to the limit
(γ /γc ≈ 1.16) found by Griffiths (2003a) when the local Richardson number verifies
Ri ≈ 1/4, whereas Majda & Shefter (1998 b) show that, for an appropriate definition of
the Richardson number, Ri < 1/4 corresponds to a flow that overturns. In such regime,
density is vertically homogenized over layers of small vertical extent that are separated
by sharp jumps in stratification which can reach a very large latitudinal extension.

For further details on nonlinear inertial instability, see Hua et al. (1997) and
Griffiths (2003a , b).

5.2. Parametric adjustment of the mixed Rossby–gravity wave: angular momentum
budgets

Let us now examine the angular momentum budget in the nonlinear initial-value
simulation of § 4.1. As mentioned above, the simulation corresponds to the free
nonlinear adjustment of an MRG wave in the absence of any external forcing, so
that fluid parcels conserve angular momentum at each instant

M(y, z, t) = u − 1
2
βy2,
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Figure 11. Density profile at the dynamical equator y0 = γ /2β (solid line) and meridional
mean density profile (dashed line).

(since u denotes the total zonal velocity it includes the initialized MRG wave signal)

d

dt
M = 0.

The initial profiles of total angular momentum M at t = 0 with u = Ũ is plotted in
figure 12(a). The barotropic component of angular momentum M(y, t =0) coincides
exactly with the planetary component −βy2/2 initially since the MRG wave zonal
velocity integrates to zero over a vertical wavelength. Figure 12(a) also shows angular
momentum at two depths where the MRG zonal velocity amplitude has opposite
phases (dash-dotted lines): the non-zero zonal shear of the MRG wave implies
the presence of extrema of angular momentum away from the equator (≈ 40 km).
Figure 12(b) shows the corresponding meridional profiles of initial potential vorticity
(vertically averaged and at the above-mentioned two depths), which all correspond
to the planetary potential vorticity since v = 0 in our initial conditions. Although
the classical inertial instability condition f Q < 0 is not verified initially, there are
meridional maxima of angular momentum displaced from the equator at some
depths. (After the initialization and because of the time-oscillation of the wave,
these meridional maxima of angular momentum vary in latitude and time as well as
the potential vorticity.)

Figure 12(c) shows the meridional profiles of total angular momentum after
nonlinear adjustments: there is a partial homogenization of total angular momentum
at both vertical levels as well as of barotropic angular momentum. Figure 12(d) shows
the corresponding meridional profiles of potential vorticity after nonlinear adjustment
at the above-mentioned two depths and for its barotropic component. There is also a
tendency for a lateral homogenization of potential vorticity symmetrically about the
equator. These last two figures should be compared with figures 10(a) and 10(b) for
the case of steady inertial instability. The nonlinear evolution of the parametrically
excited motions induced by the basic state MRG wave described in § 4.1 has wiped
out the baroclinic extra-equatorial maxima of angular momentum, that are present
initially.

More importantly, the barotropic component of angular momentum M(y, t) (solid
line in figure 12c) which is now clearly distinct from the planetary contribution, is also
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Figure 12. MRG wave initial-value problem nonlinear simulation. (a, c) Profiles of angular
momentum as a function of latitude: (a) initial time; (c) final time. Dash-dotted curves
correspond to the total angular momentum M at two different depths where the zonal velocity
amplitude of the MRG wave has opposite phases. Dashed curve: planetary angular momentum
contribution. Solid curve: total barotropic angular momentum M . (b, d) Profiles of potential
vorticity Q as a function of latitude; (b) initial time; (d) final time. Solid curve: vertically
averaged potential vorticity. Dash-dotted curves: potential vorticity at the above-mentioned
two depths.

homogenized laterally and is symmetric about the equator (while homogenization
occurs only in a single hemisphere for inertial instability induced by a steady
shear). We emphasize that such barotropic homogenization of angular momentum,
symmetric about the equator, necessarily implies westward flow in an equatorial band
and extra-equatorial eastward flow (at y ≈ 100 km, figure 13) to globally conserve
angular momentum. Since westward flow is often observed at large depths beneath
the equatorial thermocline, such nonlinear adjustment of a finite-amplitude MRG
wave could thus be relevant for explaining the equatorial oceanic observations. We
have checked numerically that the relative amplitude of eastward and westward
flows depends on the initial MRG wave’s Froude number. However, the latitudinal
positions of the eastward maxima always coincide with the critical inertial latitudes
(yc = ±ω0/2β) and are thus independant of the Froude number.

All the above results further support the analogy between the so-called inertial-
parametric instability and classical inertial instability, since the parametric case pre-
sents a tendency for a homogenization of angular momentum and potential vorticity.

Moreover, for a large enough initial Froude number of the MRG wave, the
excited modes 7 and 8 which are plotted in figure 5 at their maximum amplitude,
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Figure 13. (a) Barotropic angular momentum and (b) barotropic zonal velocity profile after
nonlinear adjustment of the MRG wave.

subsequently break. This leads to density overturning and thus to the formation of
density layering, over large meridional distances. This is similar to what happens in
the steady inertial instability problem (§ 5.1). Such layering regime could be relevant
to oceanic observations in the equatorial oceans where meridionally extended layering
of salt and temperature have been observed in the upper layers (Richards & Banks
2002) as well as in deeper regions (d’Orgeville et al. 2004) on both sides of the equator.

It should be pointed out that the breaking of modes 7 and 8 leads to an irreversible
mixing of potential vorticity: the energy loss by the MRG wave benefits not only
modes 7 and 8 but also the barotropic mode, as well as small meridional and vertical
scales through dissipation after breaking has occurred (figure 7). This dissipative
character of the breaking process entails the irreversibility of the potential vorticity
mixing. Such a mixing occurs on a time scale linked to the breaking of modes 7 and 8
and thus faster than the instability growth rate (figure 7b).

6. Summary and discussion
We have demonstrated the existence of a linear parametric instability triggered by

an oscillating shear flow on an equatorial β-plane under zonally symmetric conditions
and for a stratified fluid. This has been shown analytically for the limit of a weak
shear amplitude relatively to the oscillating shear frequency. Spatial properties of
this instability are solely governed by its forcing frequency ω0. The ‘driving’ of
this instability originates from a specific property of the equatorial β-plane: the
continuous distribution of inertial oscillation frequencies implies that for any given
ω0, the periodic shear forcing will excite a subharmonic parametric resonance of
inertial oscillations at a critical inertial latitude yc such that

βyc = ± 1
2
ω0

(as demonstrated for the homogeneous fluid case). A first consequence is that the
faster the shear oscillation, the wider the equatorial band with resonant growth.
Stratification comes into play mainly for selecting a most unstable high vertical mode

mc ≈ 7.45m0, m0 =
βN

ω2
0

,

m0 being the equatorial vertical mode which is characteristic of frequency ω0, with
a combination resonance of the summed type involving two free meridional modes
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n= 0 and n= 1. High vertical free modes are selected by subharmonic parametric
instability because they have lower frequencies.

We propose to name such resonant instability an equatorial inertial-parametric
instability because (i) of its overall similarity with the classical steady inertial instability
triggered by non-zero shear at the equator and (ii) it corresponds to the resonant
excitation of free inertio-gravity waves of the equatorial β-plane.

This inertial-parametric instability is endowed with more physical properties than
classical inviscid inertial instability owing to the existence of non-zero steady shear at
the equator. In particular, it has a well-defined inviscid linear vertical scale selection,
that corresponds to the lowest vertical unstable mode. For a fixed viscosity/diffusion
level, linear inertial-parametric instability requires a lower threshold of shear
amplitude for the instability to set in than for steady inertial instability, the
critical vertical wavenumber being furthermore independent of viscosity. The inertial
instability limit is recovered for the regime of ω0 
 γ where inertial instability takes
place at a given level on each side of the equator for each half-period of the shear
flow oscillation.

The previous idealized study requires an external forcing that maintains the
oscillating shear flow. In a geophysical context, such oscillating shear can be attributed
to large-vertical-scale free equatorial waves that are ubiquitous in atmospheric and
oceanic observations and do not require an external forcing. We have in that context
studied the nonlinear adjustment of a zonally symmetric mixed Rossby–gravity
(MRG) wave, which is the simplest zonally symmetric wave with non-zero zonal
shear at the equator. Since it is well known that linear equatorial waves are not exact
solutions of the nonlinear equations of motion for the equatorial β-plane case, initial-
value simulations of such MRG waves with moderate basic-state Froude numbers
0.03 <α < 0.4, in the absence of any external forcing, have been performed. They
show that the nonlinear adjustment process involves a parametric resonant instability
of the inertial-parametric type. The final nonlinearly equilibrated signal is dominated
by two high vertical modes, free inertio-gravity waves, with vertical scales 7 and 8
times smaller than the initial basic MRG wave, and with meridional wavenumbers
1 and 0, respectively.

We have proved that such a resonant response could be predicted by a truncated lin-
earization of the equations of motions about the basic MRG wave state, where forcing
terms due to the advection of the perturbation by the MRG wave which cannot induce
energy tranfer have been discarded. The truncated system amounts to only keeping the
advection by the perturbation of the MRG wave. More fundamentally, the symmetry
breaking enabled by the antisymmetric shear and meridional buoyancy gradient of
the MRG wave play a fundamental role in the development of the instability.

In our opinion, one geophysically relevant implication of such inertial-parametric
instability of the MRG wave concerns its consequences on angular momentum
redistribution. The nonlinear adjustment process of the MRG wave exhibits over the
whole domain height a substantial meridional homogenization of angular momentum
and of potential vorticity symmetrically about the equator on average in the vertical.
The nonlinear saturation of the inertial-parametric instability induced by laterally
and vertically sheared flows behaves analogously to the classical inertial instability
triggered by a steady shear flow. The nonlinear evolution of both instabilities favours
a meridional homogenization of angular momentum and potential vorticity. This
mixing of potential vorticity is irreversible since it involves dissipative processes
through the breaking of the unstable modes for high enough supercriticalities of the
basic state.
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However, the main difference between the two types of instability is that steady
inertial instability homogenizes only on a given side of the equator, whereas inertial-
parametric instability excited by the MRG wave yields a homogenization which
is symmetric about the equator. Such angular momentum meridional redistribution
developed by an MRG wave creates westward flow at the equator and eastward
extra-equatorial flow, which is often observed in deep oceanic equatorial flows.

Another implication of such angular momentum redistribution by large vertical
and extended meridional circulation cells is the mixing of all properties conserved by
fluid parcels. Such lateral mixing has been already noted by Richards & Edwards
(2003) for the case of steady inertial instability. Since in a stratified medium density is
one particular conserved property, this inertial-parametric instability is able to create
density layering for shear amplitudes large enough to cause local density overturning.
This process is akin to the one put forward by Majda & Shefter (1998a, b) with a
resonant excitation of internal waves in a stratified medium. It should be pointed
out that in that case ω0 ≈ N/2, whereas for equatorial inertial-parametric instability,
ω0 
 N/2. The layering which is thus produced is associated with low meridional
wavenumber inertio-gravity waves which have a large meridional scale extent in
contrast to internal waves motions. Such a layering mechanism induced on both
sides of the equator by an equatorial oscillating shear flow is proposed by d’Orgeville
et al. (2005) to explain the layering observed at depths in the equatorial Atlantic over
considerable meridional (200 km) and zonal extent (800 km).

In this work, we have focused on the irreversible mixing of potential vorticity
brought about by wave breaking in the meridional (y, z)-plane of high vertical modes
that are excited by inertial-parametric instability. Such meridional plane mixing is
consistent with our zonally symmetric assumption. Bouchut, Le Sommer & Zeitlin
(2004) study instead the irreversible mixing of potential vorticity induced by wave
breaking in a one-layer shallow-water model, where the zonal pressure gradient plays
a central role in the wave steepening. It could be of interest for further studies to take
into account both types of breaking mechanism.

The authors would like to thank Drs F. Marin and R. Schopp and Mr G. Forget
for valuable comments on this work. Numerous thoughtful comments by referees
are greatfully acknowledged. Support from the Institut du Développement et des
Ressources en Informatique Scientifique via grant. 41299 is acknowledged.

Appendix A. Escaping Hide’s theorem: effect of lateral dissipation on persistent
layering

The zonal equation of motion for a zonally symmetric flow

du

dt
− βyv = Du,

where Du is dissipation, is rewritten in terms of angular momentum as M = u−βy2/2

dM

dt
= Du. (A 1)

In the above equations, u denotes the total zonal velocity. Such an equation states
angular momentum conservation by fluid parcels except for dissipation of zonal
velocity.
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Vertical dissipation acting alone : Hide’s theorem

For a downgradient vertical dissipation, e.g. Du = νz(∂
2u/∂z2), equation (A 1)

becomes
dM

dt
= νz

∂2M

∂z2
, (A 2)

and Hide’s theorem applies (e.g. Held & Hou 1980): for any amount of dissipation νz,
even for vanishingly small values, a steady solution of (A 2) cannot present a vertically
localized extremum of angular momentum except at a boundary, since at each point
such solution verifies the flux equation

∇ · (MV) = νz

∂2M

∂z2
.

Hide’s theorem applies on the equatorial β-plane since vertical variations of M

exactly coincide with those of the zonal velocity u.

Laplacian lateral dissipation: escaping Hide’s theorem

In the case of both a vertical and lateral downgradient dissipation of zonal velocity
u, the applicability of Hide’s theorem can depend on the explicit choice of lateral
dissipation.

For a Laplacian lateral dissipation (Du = νz(∂
2M/∂z2)+κh(∂

2u/∂y2)) since Du 	= DM ,
a flux form equation for angular momentum cannot apply because of the term in y2

in planetary angular momentum −βy2/2. Hide’s theorem does not apply.

Persistent layering

For the numerical simulations of § 5.1, if lateral Laplacian diffusion/dissipation are
used, we have found that a baroclinic meridional circulation is present in the final
state, enabling the existence of extrema in the vertical of angular momentum as well
as a persistent layering. These results provide an example that escapes the conditions
necessary for Hide’s theorem to apply. In such a case, the barotropic flow verifies

∂

∂y
Mv = κh

∂2u

∂y2
.

Appendix B. Parametric instability of the geostrophic component of the mixed
Rossby–gravity wave

In this Appendix, we shall analytically (i) justify the resonant instability between
two distinct vertical modes occurring in the MRG wave case (§ 4), (ii) provide an
estimate of the growth rate, and (iii) establish the role played by the Froude number
of the basic state. In § B.1, system (4.9)–(4.11) is reduced to a simplified Eliassen–
Sawyer equation relevant for high vertical modes. In § B.2, a multiple scale analysis is
performed.

To alleviate notations, the prime sign denoting perturbation is omitted in this
Appendix and we shall denote partial derivatives with a subscript in § B.1.

B.1. Relevant Eliassen–Sawyer equation

System (4.9)–(4.11) can be reduced to a scalar Eliassen–Sawyer equation for ψ by
eliminating u and b

ψttzz + f 2ψzz + N2ψyy = (Ψ̃ zzyψz − Ψ̃ zzzψy)t

+ (f Ũyz − B̃yy)ψz − (B̃y + f Ũz)ψyz

+ f Ũyψzz + B̃zψyy + (B̃zy − f Ũzz)ψy, (B 1)
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To simplify the above equation we shall restrict ourselves to the case of a high
vertical mode m and introduce the small parameter

ε =

√
m0

m
.

Equation (B 1) is non-dimensionalized for this vertical mode m with the same scaling
as in the beginning of § 3.1 (and asterisks are omitted hereinafter)

ψttzz + y2ψzz + ψyy = (mV0/N )εe−ε2y2/2[−ε3{cos(t/ε)(y sin(ε2z)ψz + cos(ε2z)ψy)}t

+ sin(t/ε) sin(ε2z){(−[ε4y3 − ε2y] + [3ε2y − ε4y3])ψz − ([1 − ε2y2] − ε2y2)ψzy}
+ sin(t/ε) cos(ε2z){(y − ε2y3)ψzz + ε2yψyy + ([ε2 − ε4y2] + ε4y2)ψy}].

Assuming ε 
 1, a singular perturbation expansion in y gives the relevant non-
dimensional Eliassen–Sawyer equation

ψzztt + y2ψzz + ψyy =
mV0

N
ε sin(t/ε)(yψzz cos(ε2z) − ψyz sin(ε2z)), (B 2)

since all other terms in the original equation (B 1) are of order ε2 smaller than terms
kept in (B 2). This scale analysis is valid when y =O(1), which can be justified by the
exponential decay of the projecting Hermite mode in § B.2.

Finally, the dimensional Eliassen–Sawyer equation, relevant for high vertical mode
perturbations, is

ψttzz + β2y2ψzz + N 2ψyy − V0

λ0

sin(ω0t)[βy cos(m0z)ψzz − N sin(m0z)ψyz] = 0, (B 3)

which corresponds to

ψttzz + f 2ψzz + N 2ψyy − f Ũyψzz + B̃yψyz = 0. (B 4)

B.2. Multiple-scale analysis

In order to work with non-dimensional quantities which only depend on the basic-
state MRG wave and not on the vertical scale of the perturbations, the truncated
Eliassen–Sawyer equation (B 3) is non-dimensionalized with the characteristic scales
of the MRG wave (z∗ =m0z, y

∗ = y/λ0, t
∗ = tω0, and asterisks are omitted hereinafter)

∂4ψ

∂t2∂z2
+ y2 ∂2ψ

∂z2
+

∂2ψ

∂y2
= α sin(t)

(
y

∂2ψ

∂z2
cos(z) − ∂2ψ

∂y∂z
sin(z)

)
. (B 5)

The key parameter is the amplitude of the MRG wave through the Froude number
α defined in (4.4).

Equation (B 5) is projected on the basis of meridional/vertical mode {l, k} such
that

ψ(y, z, t) =
∑
k�1

∑
l�0

ϕl,k(y)φl,k(t) sin(kz + θl,k),

with ϕl,k(y) = Hl(
√

ky) exp(−ky2/2). Making use of the recurrence relations of Hermite
functions for a given vertical mode k

yϕl,k =

√
1

k

(
lϕl−1,k + 1

2
ϕl+1,k

)
,

∂

∂y
ϕl,k =

√
k
(
lϕl−1,k − 1

2
ϕl+1,k

)
,
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∂2

∂y2
ϕl,k = (k(2l + 1) − (ky)2)ϕl,k,

and projecting on a given vertical mode p and its meridional mode n, this yields

∂2

∂t2
φn,p + δ2

n,pφn,p =
α

√
p

sin(t)

×
(

1
2
cos(θn,p − θn−1,p+1)φn−1,p+1 + (n + 1) cos(θn,p − θn+1,p−1)φn+1,p−1

)
, (B 6)

where δ2
n,p =(2n + 1)/p. Note that we have used the approximation that Hermite

functions of distinct vertical modes k and k + 1 are orthonormal.
The oscillation with height of the basic state thus involves possible resonant

interactions between distinct vertical modes, such that they correspond to {n, p + 1}
and {n+ 1, p}, or for a dimensional vertical wavenumber to {n, m +m0} and
{n+ 1, m}. Combination resonances of the summed type will occur for appropriate
values of θn+1,p − θn,p+1, the optimal case being θn+1,p − θn,p+1 = 0 or π. In the latter
case, the multiple-scale analysis of (B 6) with α 
 1 and τ = αt is analogous to that
used in § 3

φn,p(t, τ ) = A0
n,p(t, τ ) + αA1

n,p(t, τ ) + O(α2).

At order 0,

A0
n,p(t, τ ) = Bn,p(τ )exp(iδn,pt) + c.c.

At order 1,

∂2A1
n,p

∂t2
+ δ2

n,pA1
n,p = −

(
2
∂2A0

n,p

∂τ∂t

)
+

1
√

p

(
1
2
A0

n−1,p+1 + (n + 1)A0
n+1,p−1

)
sin(t).

Proceeding as in § 3.1, the instability condition is found to be

α2 (n + 1)

8
√

(2n + 1)(2n + 3)
>

(
1 −

√
2n + 1

p + 1
−

√
2n + 3

p

)2

.

A countable infinite number of pairs {n, p + 1} and {n + 1, p} can be found to be
unstable for a given Froude number α. For such a pair, the dimensional growth rate
is

µ = 1
2
γ

√√√√ (n + 1)

8
√

(2n + 1)(2n + 3)
− ω2

0

γ 2

(
1 −

√
2n + 1

p + 1
−

√
2n + 3

p

)2

. (B 7)

This equation has to be compared with (3.6).
In the barotropic shear case (§ 3), the spectrum of unstable vertical modes is

continuous and it is possible to find a perfect resonance for a vertical mode m such
that the detuning (second term of the radicand in (3.6)) is exactly zero. The growth

rate for perfect resonance is 1
2
γ
√

(n + 1)/8
√

(2n + 1)(2n + 3) and leads to an inviscid
vertical scale selection for the vertical mode of m ∼ 7.45m0 (§ 3.2).

In the MRG wave case, because the spectrum of unstable vertical modes is discrete
(p necessarily takes integer value), it is no longer possible to find a perfect resonance
for which the detuning (second term of the radicand in (B 7)) is zero. However the
effect of the detuning on the growth rate amplitude decreases with the Froude number
α = γ /ω0 and for sufficently large value of α it should be possible to have a vertical
scale selection due to the perfect resonance term.
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Indeed we have checked numerically in the range of 0 � n � 200 and 1 � p � 1000
that for α � 0.084 the pair {n=0, p = 8} and {n=1, p = 7} has the maximum growth
rate. For the MRG wave case, a similar vertical mode selection to the barotropic
shear case is thus recovered for large enough Froude number.

The growth rate for the pair {n=0, p = 8} and {n= 1, p =7}, predicted by (B 7),
has been checked to differ by less than 20 % from the one found in the numerical
simulations of § 4.2. We suspect that this discrepancy is due to the approximation of
singular expansion used in § B.1.

Furthermore the detuning in (B 7) implies an inviscid critical Froude number

αc ∼ 0.03,

for the growth of the pair {n=0, p = 8} and {n=1, p = 7}.

REFERENCES

Anderson, D. T. & Gill, A. E. 1979 Beta dispersion of inertial waves. J. Geophys. Res. 84,
1836–1842.

Benielli, D. & Sommeria, J. 1998 Excitation and breaking of internal waves by parametric
instability. J. Fluid Mech. 374, 117–144.

Bouchut, F., Le Sommer, J. & Zeitlin, V. 2004 Transport and mixing during the breaking of
balanced and unbalanced equatorial waves. Chaos (in press).
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